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Abstract. When the golden ratio and its conjugate are zeros to a polynomial, two of the
coefficients are functions of the Fibonacci sequence in terms of the other coefficients, which
characterize the polynomials completely. These functions are used to derive some Fn, Ln,
and golden ratio identities. In many cases, this is generalized to the Lucas functions Un and
Vn, with associated quadratic root pair. A new type of geometric progression is introduced.

1. Introduction

Draim and Bicknell in [4] observed that the polynomials x2−Lnx+(−1)n have the zeros αn

and βn, where α and β are the golden ratio and its conjugate, α = (1+
√

5)/2, β = (1−
√

5)/2,
and Ln is the Lucas number sequence, [10]. This same fact was presented in more detail by
Hoggatt in [8, pp. 66–67]. In Alexanderson’s solution [1] to Wall’s proposed problem [19], it
was shown that the polynomials xn − Fnx− Fn−1 have α (and β) as zeros because x2 − x− 1
is a factor of these polynomials, where Fn is the Fibonacci number sequence. He and Shiue
noticed in [7] that α and β are zeros of the polynomials xn − Fnx − Fn−1 by observing the
identities αn = αFn+Fn−1 and βn = βFn+Fn−1, which were obtained in [7] as applications of
their degree reduction approach and were also proved using mathematical induction by Thoro
in [17].

Inspired by all of the above results, in this paper a general rule that uses Fibonacci and
Lucas number sequences is presented to recognize and determine the coefficients of polynomials
that have both rαn and rβn (r 6= 0) as zeros. Furthermore, the polynomials with zeros rαn

and rβn are completely characterized by their constant term and linear term coefficients. This
relationship is used to derive many new and well-known identities involving Fn, Ln, and the
golden ratio. In the process of writing this paper, we realized that, with little modification,
many of the formulas may be made to apply, not only to the golden ratio and its conjugate,
but to any pair of quadratic roots, a and b, and associated number sequences, described by
Lucas in [10], such as the Pell sequence (a, b = 1±

√
2), and a Fermat sequence (a = 2, b = 1).

Lucas denoted a and b as the two roots of the equation x2 = px − q, and described some
useful number sequences generated by the simple periodic numerical functions Un = an−bn

a−b ,

and Vn = an + bn, [10, eqns. (2), p. 2]. The special case of p = 1, and q = −1 gives us
a = α, b = β, Un = Fn, and Vn = Ln. Wherever the general case is applicable, we use the
symbols a and b for the zeros, in place of α and β, and Un and Vn for the number sequence
element symbols, in place of Fn and Ln. The paper has the following structure: in Section 2
we present the coefficient characterization of polynomials having ran and rbn (r 6= 0) as zeros.
Equivalent expressions of this characterization, and examples, are then presented in Section
3. The application of the coefficient characterization in the construction of identities involving
Fn, Ln, and the golden ratio, generalized where feasible to Un, Vn, and a, b, will be given in
Section 4.
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2. Coefficient characterization of polynomials having ran and rbn zeros

Proposition 2.1. Denote

Pn(x) =
n∑
i=0

cix
i = c0 + c1x+ c2x

2 + . . .+ cn−1x
n−1 + cnx

n , n ≥ 2, (2.1)

a and b are the two roots of the equation q − px+ x2 = 0, specifically

a =
p+

√
p2 − 4q

2
, and b =

p−
√
p2 − 4q

2
,

Un =

{ an−bn
a−b if a 6= b (Lucas Binet Formula)

n
(
p
2

)n−1
if a = b ,

and Vn = an + bn, (Lucas Formula)

then, for r 6= 0, Pn(rak) = Pn(rbk) = 0 if and only if these hold:

c1 =

{
− 1
Uk

∑n
i=2 cir

i−1Uki if k 6= 0 ∧ a 6= b

−
∑n

i=2 icir
i−1 if k = 0 ∨ a = b

and (2.2)

c0 = −
1

2

n∑
i=1

cir
iVki =

{
1
2

∑n
i=2 cir

i
(
VkUki

Uk
− Vki

)
if k 6= 0 ∧ a 6= b∑n

i=2(i− 1)cir
i if k = 0 ∨ a = b

. (2.3)

Proof. If rak (r 6= 0) is a zero of Pn(x), then Pn(x) = (x− rak)Qn−1(x) = 0, where

Qn−1(x) =
n∑
i=1

ci

i−1∑
j=0

rjakjxi−1−j = 0 (2.4)

is determined using polynomial division of Pn(x) by x− rak. In fact, by multiplying x− rak
and Qn−1(x), which is shown in (2.4), we may reconstruct Pn(x) as follows.

(x− rak)Qn−1(x) = (x− rak)
n∑
i=1

ci

i−1∑
j=0

rjakjxi−1−j

=

n∑
i=1

ci

i−1∑
j=0

rjakjxi−j −
n∑
i=1

ci

i−1∑
j=0

rj+1ak(j+1)xi−1−j

=
n∑
i=1

cix
i +

n∑
i=2

ci

i−1∑
j=1

rjakjxi−j −
n∑
i=1

cir
iaki −

n∑
i=2

ci

i−1∑
j=1

rjakjxi−j

=

n∑
i=1

cix
i + c0 = Pn(x),

where we use c0 = −
∑n

i=1 cir
iaki in the last line, because Pn(rak) = 0. In the third line, The

j = 0 terms are separated from the left sum of line two, and the j = i− 1 terms are separated
from the right sum of line two.
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If both rak and rbk are roots of Pn(x) = 0, then Qn−1(rb
k) = 0. Hence, substituting x = rbk

into (2.4) and solving for c1 yields

c1 = −
n∑
i=2

ci

i−1∑
j=0

rjakjri−1−jbk(i−1−j) = −
n∑
i=2

cir
i−1a

ki − bki

ak − bk
, k 6= 0 (2.5)

where the last equality is obtained by using the identity, [2, p. 6],

i−1∑
j=0

xjyi−1−j =
xi − yi

x− y
.

Utilizing the Lucas Binet formula Un = (an − bn)/a − b, one may write the ratio on the
rightmost side of (2.5) as Uki/Uk, which implies that (2.5) is equivalent to (2.2) for the case
of k 6= 0. If k = 0, then the first equation of (2.5) gives c1 = −

∑n
i=2 icir

i−1, which implies
(2.2) in the case of k = 0.

Next, substituting rak and rbk for x into Pn(x) = 0, and then solving for c0, we obtain,
respectively,

c0 = −
n∑
i=1

cir
iaki and c0 = −

n∑
i=1

cir
ibki.

Hence,

c0 = −
n∑
i=1

cir
i a

ki + bki

2
.

Utilizing an + bn = Vn, we may re-write this as the first equation of (2.3). For k 6= 0,
substituting the corresponding expression of c1 shown in (2.2) into the first equation of (2.3)
yields

c0 = −1

2

(
c1rVk +

n∑
i=2

cir
iVki

)

=
1

2

n∑
i=2

cir
i

(
VkUki
Uk

− Vki
)
. (2.6)

Similarly, for k = 0, this holds:

c0 = −1

2

n∑
i=1

cir
iV0 = −rc1 −

n∑
i=2

cir
i =

n∑
i=2

(i− 1)cir
i.

For the case of a = b, if a = b, then rak = rbk, i.e., there is a duplicate zero. Such is also the
case when k = 0. Suppose Pn(tam) = Pn(tbm) = 0, and that a = b. Let r = tam, and k = 0,
then rak = tam, and it seen that the case of a = b is the same as the case of k = 0.

This completes the proof that if Pn(rak) = Pn(rbk) = 0, then c1 has the value given by
equation (2.2), and c0 has the value given by equation (2.3). Conversely, if the polynomial
Pn(x) denoted by (2.1) possesses the coefficients c1 and c0 presented as (2.2) and (2.3), re-
spectively, then we may substitute the expression of c1 into (2.3) to obtain (2.6). Using
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equations (2.6) and (2.2) for k 6= 0, we can substitute them for c0 and c1, respectively, into
Pn(x) = c0 + c1x+

∑n
i=2 cix

i to get:

Pn(x) =

n∑
i=2

cir
i

(
Vk
2

Uki
Uk
− Vki

2

)
−

(
n∑
i=2

cir
i−1Uki

Uk

)
x+

n∑
i=2

cix
i. (2.7)

Summing and subtracting an + bn = Vn with an − bn = δUn, where δ = a − b, we get [10,
p. 8, eqns. (6)]

an =
Vn + δUn

2
and bn =

Vn − δUn
2

,

which, for a = α and b = β, are the well-known formulas [3, 15, 16, 18]

αn =
Ln +

√
5Fn

2
and βn =

Ln −
√

5Fn
2

Substituting the above expression of rak for x, and riaki for xi into equation (2.7) yields

Pn(rak) =

n∑
i=2

cir
i

(
Vk
2

Uki
Uk
− Vki

2

)
−

n∑
i=2

cir
i−1Uki

Uk
r
Vk + δUk

2

+

n∑
i=2

cir
iVki + δUki

2

=
n∑
i=2

cir
i

(
Vk
2

Uki
Uk
− Vki

2
− Vk

2

Uki
Uk
− δUki

2
+
Vki + δUki

2

)
= 0.

For the case of k = 0, x = r, and it is easy to see the corresponding c1 and c0 shown in (2.2)
and (2.3), put into Pn(x) = c0 + c1x+

∑n
i=2 cix

i, yield

Pn(r) =

n∑
i=2

(i− 1)cir
i −

n∑
i=2

icir
i−1r +

n∑
i=2

cir
i = 0.

Similarly, we may prove Pn(rbk) = 0, which shows that both rak and rbk are the zeros of
Pn(x) if its coefficients c1 and c0 are given as (2.2) and (2.3), respectively. This completes the
proof of the proposition.

�

Remark Here is a proof that Un = n
(p
2

)n−1
when a = b.

Proof. Using the identity an − bn = (a− b)
∑n−1

i=0 a
ibn−1−i we have

Un =
an − bn

a− b
=
a− b
a− b

n−1∑
i=0

aibn−1−i =
n−1∑
i=0

aibn−1−i . (2.8)

When a = b, p2 = 4q, and p
2 = a = b. Substituting p

2 for both a and b in this last expression
of Un yeilds

Un =
n−1∑
i=0

(p
2

)i (p
2

)n−1−i
=

n∑
i=1

(p
2

)n−1
i

= n
(p

2

)n−1
.

�
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Let r = hk (h 6= 0). From Proposition 2.1:

Corollary 2.2. If Pn(x), a, b, Un, and Vn are defined as in Proposition 2.1, then for h 6= 0,
Pn((ha)k) = Pn((hb)k) = 0 if and only if these hold:

c1 =

{
− 1
Uk

∑n
i=2 cih

k(i−1)Uki if k 6= 0 ∧ a 6= b

−
∑n

i=2 ici if k = 0 ∨ a = b
and (2.9)

c0 = −1

2

n∑
i=1

cih
kiVki =

{
1
2

∑n
i=2 cih

ki
(
VkUki
Uk
− Vki

)
if k 6= 0 ∧ a 6= b∑n

i=2(i− 1)ci if k = 0 ∨ a = b
. (2.10)

If h = 1, then a particular case of Corollary 2.2 can be written as

Corollary 2.3. Let Pn(x), a, b, Un, and Vn be denoted as in Proposition 2.1, then Pn(ak) =
Pn(bk) = 0 if and only if these hold:

c1 =

{
− 1
Uk

∑n
i=2 ciUki if k 6= 0 ∧ a 6= b

−
∑n

i=2 ici if k = 0 ∨ a = b
and (2.11)

c0 = −1

2

n∑
i=1

ciVki =

{
1
2

∑n
i=2 ci

(
VkUki
Uk
− Vki

)
if k 6= 0 ∧ a 6= b∑n

i=2(i− 1)ci if k = 0 ∨ a = b
. (2.12)

Similarly, h = −1 gives us the following particular case of Corollary 2.2.

Corollary 2.4. Let Pn(x), a, b, Un, and Vn be denoted as in Proposition 2.1, then Pn((−a)k) =
Pn((−b)k) = 0 if and only if these hold:

c1 =

{
− 1
Uk

∑n
i=2 ci(−1)k(i−1)Uki if k 6= 0 ∧ a 6= b

−
∑n

i=2 ici if k = 0 ∨ a = b
and (2.13)

c0 = −1

2

n∑
i=1

ci(−1)kiVki =

{
1
2

∑n
i=2 ci(−1)ki

(
VkUki
Uk
− Vki

)
if k 6= 0 ∧ a 6= b∑n

i=2(i− 1)ci if k = 0 ∨ a = b .
(2.14)

A property of quadratic roots is that a−1 = q−1b. There is an interesting property of
polynomial equations that will be combined with this property, and Proposition 2.1, to derive
more identities in the next section. We present this property in a lemma, because we have
not been able to find it published, though it is related to reciprocal polynomials, of which an
application is discussed in [5, p. 250].

Lemma 2.5. Let Pn(x) =
∑n

i=0 cix
i, Rn(y) =

∑n
i=0 diy

i, and di = cn−i for all i. If

z1, z2, . . . , zn are zeros of Pn(x), then the zeros of Rn(y) are 1
z1
, 1
z2
, . . . , 1

zn
. In other words,

if the order of the coefficients of the terms of a polynomial equation in standard form are
reversed, then the roots of the new polynomial are the reciprocals of the roots of the original
polynomial.

Proof. Multiply Rn(y) = 0 by 1
yn to get

cn
1

yn
+ cn−1

1

yn−1
+ cn−2

1

yn−2
+ . . .+ c1

1

y
+ c0 = 0 = Pn

(
1

y

)
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This new polynomial equation has the same roots as Rn(y) = 0, because multiplying both
sides of the equation by the same value will not change the roots to the equation. Now, let
x = 1

y , producing Pn(x) = 0, which was given to have roots z1, z2, . . . , zn. Since y = 1
x , the

values of y that make Pn

(
1
y

)
= 0 are 1

z1
, 1
z2
, . . . , 1

zn
. Rn(y) = 0 will have these same roots.

�

We may use this lemma to characterize polynomials Pn(x) having rak and rbk as zeros by
their cn and cn−1 coefficients:

Corollary 2.6. Denote Pn(x), a, b, p, q, Un, and Vn as in Proposition 2.1, then for r 6= 0,
Pn(rak) = Pn(rbk) = 0 if and only if these hold:

cn−1 =

{
− 1
Uk

∑n
i=2 cn−i(q

kr)1−iUki if k 6= 0 ∧ a 6= b

−
∑n

i=2 icn−ir
1−i if k = 0 ∨ a = b

and (2.15)

cn = −1

2

n∑
i=1

cn−i(q
kr)−iVki =

{
1
2

∑n
i=2 cn−i(q

kr)−i
(
VkUki
Uk
− Vki

)
, k 6= 0 ∧ a 6= b∑n

i=2(i− 1)cn−ir
−i, k = 0 ∨ a = b .

(2.16)

Proof. Let Rn(y) =
∑n

i=0 dix
i have zeros tak, tbk. The value of d1 may be determined using

equation (2.2), and d0 using equation (2.3), where r in the equations is t. Now, suppose
that di = cn−i for all i, and t = q−kr−1, then by lemma 2.5, and a−1 = q−1b, the roots to
Pn(x) =

∑n
i=0 cix

i = 0 are rak and rbk. cn−1 = d1, and cn = d0. Replacing c1 with cn−1, c0
with cn, and r with q−kr−1 in equations (2.2) and (2.3), converts them into equations (2.15)
and (2.16). �

3. Equivalent Expressions

Conditions presented in the proposition above can be used to generate additional expres-
sions. However, in order to present them in generalized form, we must first present a few
simple identities involving Un and Vn.

Denote Pn(x), a, b, p, q, Un, and Vn as in Proposition 2.1, then

Vn = Un+1 − qUn−1 , (3.1)

Vn = pUn − 2qUn−1 , (3.2)

(A) U−n = −q−nUn , (B) V−n = q−nVn , (3.3)

Um+n = Um+1Un − qUmUn−1 , and (3.4)

qnUm−n = UmUn+1 − Um+1Un. (3.5)

Proof. To prove identity (3.1), substitute into it ab for q, and the Lucas and Lucas Binet
formulae equivalents for Vn and Un:

an + bn =
an+1 − bn+1

a− b
− aba

n−1 − bn−1

a− b
Multiplying both sides of the equation by (a− b), and distributing we have

an+1 + abn − anb− bn+1 = an+1 − bn+1 − anb+ abn

6 VOLUME , NUMBER
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The LHS and RHS of this equation are now obviously equal, then likewise must be those of
the original equation.

Identity (3.2) is obtained by substituting into identity (3.1), pUn − qUn−1 for Un+1, which
comes from [10, eqns. (10), p. 10].

Equations (3.3)(A) and (B) are easily found utilizing a−n = q−nbn in the Lucas Binet and
Lucas formulas.

To prove Identity (3.4), Note that U0 = 0, U1 = 1, and U−1 = −1/q. Using these, it is easily
verified that the identity is true for m = 0, and m = 1 (for any value of n). Let n = n + m,
then Un+m+1 = Un+1, for which, we just verified, the identity is true (the case of m = 1).
Therefore, it is true for m = 2, and by induction for m = 3, 4, . . . and so on.

Identity (3.5) is a consequence of Identity (3.4) with Identity (3.3)(A). It is interesting that,
given two Ui to use in this identity, it does not matter which of the two is assigned as Un.

�

Note that when p = 1, and q = −1, equations (3.1) to (3.3) become the well known Fibonacci
and Lucas number identities, Ln = Fn+1 + Fn−1, Ln = Fn + 2Fn−1, F−n = (−1)n+1Fn, and
L−n = (−1)nLn (see, for example, [8, pp. 27, 28]). Compare identities (3.4) and (3.5) to
identities (8) and (9) in [18, p. 176].

The following corollary expresses two equivalent forms of equation (2.3).

Corollary 3.1. Let Pn(x), a, b, p, q, Un, and Vn be denoted as in Proposition 2.1, and
Pn(rak) = Pn(rbk) = 0, then the following expressions of the coefficient c0 are equivalent.

(A) c0 = −1

2

n∑
i=1

cir
iVki, (B) c0 = q

n∑
i=1

cir
iUki−1, (C) c0 =

qk

Uk

n∑
i=2

cir
iUk(i−1), k 6= 0 (3.6)

Equivalent forms of (2.10) are

(A) c0 = q
n∑
i=1

cih
kiUki−1 and (B) c0 =

qk

Uk

n∑
i=2

cih
kiUk(i−1) , k 6= 0 (3.7)

when both (ha)k and (hb)k are zeros of Pn(x), respectively.

If h = 1, then equation (2.12) is equivalent to:

(A) c0 = q
n∑
i=1

ciUki−1 and (B) c0 =
qk

Uk

n∑
i=2

ciUk(i−1) , k 6= 0 (3.8)

Similarly, for the case of h = −1, equation (2.14) is equivalent to:

(A) c0 = q

n∑
i=1

ci(−1)kiUki−1 and (B) c0 =
qk

Uk

n∑
i=2

ci(−1)kiUk(i−1) , k 6= 0 (3.9)

Proof. (3.6)(A) is the leftmost equation of (2.3). The equivalence between (3.6)(A) and Equa-
tion (3.6)(B) is proved by beginning with (2.2) and manipulating it. Begin by multiplying
both sides of equation (2.2) by −rpUk which yields

−c1rpUk =
n∑
i=2

cir
ipUki.

MONTH YEAR 7



THE FIBONACCI QUARTERLY

Then, a simple algebra produces

c1r (−pUk + 2qUk−1 − 2qUk−1) =
n∑
i=2

cir
i (pUki + 2qUki−1 − 2qUki−1) .

Using identity (3.2), −pUk + 2qUk−1 and pUki − 2qUki−1 are replaced with −Vk and Vki,
respectively, which returns

c1r (−Vk − 2qUk−1) =

n∑
i=2

cir
i (Vki + 2qUki−1) .

Distributing yields

−c1rVk − 2qc1rUk−1 =
n∑
i=2

cir
iVki +

n∑
i=2

2qcir
iUki−1.

Hence, we have

−2qc1rUk−1 −
n∑
i=2

2qcir
iUki−1 = c1rVk +

n∑
i=2

cir
iVki,

which implies

−2q

n∑
i=1

cir
iUki−1 =

n∑
i=1

cir
iVki.

Finally, we obtain

q

n∑
i=1

cir
iUki−1 = −1

2

n∑
i=1

cir
iVki.

By equation (3.6)(A), the RHS of the previous equation is equal to c0 and thus the LHS is as
well. Thus, equation (3.6)(B) is equivalent to (3.6)(A).

To prove equation (3.6)(C), we begin by separating the i = 1 term from the summation
used for c0 in equation (3.6)(B) as such:

c0 = q

n∑
i=1

cir
iUki−1 = q

(
c1rUk−1 +

n∑
i=2

cir
iUki−1

)
.

Replacing c1 with the value given in equation (2.2), we have

c0 = q

(
−Uk−1

Uk

n∑
i=2

cir
iUki +

n∑
i=2

cir
iUki−1

)
,

which implies

c0 =
q

Uk

n∑
i=2

cir
i (UkUki−1 − Uk−1Uki) .

Here we can use identity (3.5). Let n = k − 1 and m = ki− 1 in this identity, and it becomes

qk−1Uki−k = UkUki−1 − Uk−1Uki. (3.10)

Substituting qk−1Uk(i−1) for UkUki−1 − Uk−1Uki into our last result for c0, we get equation

(3.6)(C). Setting r = hk into (3.6), we may prove (2.10) is equivalent to (3.7)(A) and (B). For
the special cases of h = 1 and h = −1, the results are obvious.

�
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When k = 1 and h = 1, equations (2.11) and (3.7)(B) (and (3.7)(A) because U0 = 0)
become:

(A) c1 = −
n∑
i=2

ciUi (B) c0 = q
n∑
i=2

ciUi−1 (3.11)

This is illustrated in table 1 for the special case of r = 1, k = 1, p = 1, and q = −1, which
leads to a = α, and b = β.

n Values of the coefficients c1 and c0 in Pn(x) when Pn(α) = Pn(β) = 0
2 c1 = −c2

c0 = −c2
3 c1 = −(c2 + 2c3)

c0 = −(c2 + c3)
4 c1 = −(c2 + 2c3 + 3c4)

c0 = −(c2 + c3 + 2c4)
5 c1 = −(c2 + 2c3 + 3c4 + 5c5)

c0 = −(c2 + c3 + 2c4 + 3c5)
6 c1 = −(c2 + 2c3 + 3c4 + 5c5 + 8c6)

c0 = −(c2 + c3 + 2c4 + 3c5 + 5c6)
7 c1 = −(c2 + 2c3 + 3c4 + 5c5 + 8c6 + 13c7)

c0 = −(c2 + c3 + 2c4 + 3c5 + 5c6 + 8c7)
8 c1 = −(c2 + 2c3 + 3c4 + 5c5 + 8c6 + 13c7 + 21c8)

c0 = −(c2 + c3 + 2c4 + 3c5 + 5c6 + 8c7 + 13c8)
9 c1 = −(c2 + 2c3 + 3c4 + 5c5 + 8c6 + 13c7 + 21c8 + 34c9)

c0 = −(c2 + c3 + 2c4 + 3c5 + 5c6 + 8c7 + 13c8 + 21c9)
10 c1 = −(c2 + 2c3 + 3c4 + 5c5 + 8c6 + 13c7 + 21c8 + 34c9 + 55c10)

c0 = −(c2 + c3 + 2c4 + 3c5 + 5c6 + 8c7 + 13c8 + 21c9 + 34c10)

Table 1. Values of c1 and c0 based on formulas (3.11)(A) and (B)

Example 3.2. We suspect that x = α and x = β are zeros of P4(x) = −7−10x+3x2+2x3+x4,
but we want to know if they are exact zeros. This would not normally be a simple task,
because α and β are irrational numbers. Referring to Table 1, at n = 4, we see that if
c1 = −(c2 + 2c3 + 3c4), and c0 = −(c2 + c3 + 2c4), then x = α and x = β are exact zeros of
the polynomial. Testing: c1 = −(3 + 2 · 2 + 3 · 1) = −10, and c0 = −(3 + 2 + 2 · 1) = −7.
Therefore, α and β are indeed exact zeros.

For comparison, we shall employ a different method to check if α and β are exact zeros of

this polynomial: Utilizing the identities αn = Ln+Fn

√
5

2 and βn = Ln−Fn

√
5

2 , we may make the

following substitutions into this equation: α = 1+
√
5

2 for x, α2 = 3+
√
5

2 for x2, α3 = 4+2
√
5

2 for

x3, and α4 = 7+3
√
5

2 for x4. The substitution result is

P4(α) = −7 +
−10(1 +

√
5) + 3(3 +

√
5) + 2(4 + 2

√
5) + 7 + 3

√
5

2
= 0

Substitution of the conjugates of these values, which are the corresponding powers of β, for the
powers of x, confirms that P4(β) also equals zero. The second method confirms the conclusion
of the first method, that both α and β are exact zeros. Obviously, the first method using
formulas (3.11)(A) and (B), as illustrated in Table 1, is the simpler method.
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Corollary 3.3. The following expressions of the coefficient cn of polynomial Pn(x) =
∑n

i=0 ci,

having zeros rak and rbk, are equivalent.

(A) cn = −1

2

n∑
i=1

cn−iq
−kir−iVki, (B) cn =

n∑
i=1

cn−iq
−(ki−1)r−iUki−1,

(C) cn =
1

Uk

n∑
i=2

cn−iq
−k(i−1)r−iUk(i−1), k 6= 0 (3.12)

Proof. Applying lemma 2.5, we replace ci with cn−i, and r with q−kr−1 in equations (3.6)(A),
(B), and (C) to generate equations (3.12)(A), (B), and (C).

�

Example 3.4. Consider the polynomial P5(x) = 2x5 − 7x4 + 4x3 + 3x2 − 186x − 44. It can
be confirmed that α3 and β3 are exact zeros of this polynomial because, using equations (2.11)
and (3.8)(B):

c1 = − 1

F3
(c2F3·2 + c3F3·3 + c4F3·4 + c5F3·5) = −1

2
(3F6 + 4F9 − 7F12 + 2F15)

= −1

2
(3 · 8 + 4 · 34− 7 · 144 + 2 · 610) = −186 and

c0 =
(−1)3

F3
(c2F3·1 + c3F3·2 + c4F3·3 + c5F3·4) = −44.

Using this same polynomial above as an example of corollary 2.6, using formulas (2.15) and
(3.12)(C), with r = 1, and q = −1:

cn−1 = − 1

F3

(
c3(−1)−3·1F3·2 + c2(−1)−3·2F3·3 + c1(−1)−3·3F3·4 + c0(−1)−3·4F3·5

)
c4 = −1

2
(−4F6 + 3F9 + 186F12 − 44F15)

c4 = −1

2
(−4 · 8 + 3 · 34 + 186 · 144− 44 · 610) = −7 and

cn =
1

F3

(
c3(−1)−3·1F3·1 + c2(−1)−3·2F3·2 + c1(−1)−3·3F3·3 + c0(−1)−3·4F3·4

)
c5 =

1

2

(
4(−1)3F3 + 3(−1)6F6 + (−186)(−1)9F9 + (−44)(−1)12F12

)
c5 =

1

2
(−4 · 2 + 3 · 8 + 186 · 34− 44 · 144) = 2.

Example 3.5. P5(x) = 12 5
16x

5− 1037
8x

4− 4x3 + 3x2− 5x+ 2 may be confirmed to have zeros

2α3 and 2β3 using formulas (2.2) and (3.6) to match c1 and c0 , or (2.15) and (3.12) to match
c4 and c5.

The following example illustrates a method of checking whether a zero of a polynomial is a
duplicate zero.

Example 3.6. Is 3 a duplicate zero of the polynomial

−46530 + 18033x+ 5x2 + 6x3 − 3x4 − x5 + 2x6 − 4x7?
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Using equations (2.2) and (2.3) with r = 3:

c1 = −
(
2c2 · 3 + 3c3 · 32 + 4c4 · 33 + 5c5 · 34 + 6c6 · 35 + 7c7 · 36

)
= − (2 · 5 · 3 + 3 · 6 · 9 + 4(−3) · 27 + 5(−1) · 81 + 6 · 2 · 243 + 7(−4) · 729) = 18033, and

c0 = c2 · 32 + 2c3 · 33 + 3c4 · 34 + 4c5 · 35 + 5c6 · 36 + 6c7 · 37

= 5 · 9 + 2 · 6 · 27 + 3(−3) · 81 + 4(−1) · 243 + 5 · 2 · 729 + 6(−4) · 2187 = −46530

Since these are the correct values of c1 and c0, we may conclude that there is a duplicate zero
at x = r = 3. This is confirmed by an alternate method for this, checking if the number is a
zero of both the polynomial and its derivative. The graph of the polynomial shows it to have a
relative maximum at the point (3, 0).

Example 3.7. Check if 2±
√

7 are exact roots of the cubic equation 5x3−42x2+73x+66 = 0,
and if so, what is the third root?

p = a + b = (2 +
√

7) + (2 −
√

7) = 4, q = ab = 22 −
√

7
2

= −3. For the Un sequence,
U1 = 1, and U2 = p. To find U3, we use Un = pUn−1 − qUn−2, U3 = p2 − q = 16− (−3) = 19.
r = 1, and k = 1, therefore we may use formulas (3.11)(A) and (B). c1 = − (c2U2 + c3U3) =
− (−42 · 4 + 5 · 19) = 73. c0 = q (c2U1 + c3U2) = −3 (−42 · 1 + 5 · 4) = 66. These values for
c1 and c0 match those in the equation, therefore 2 ±

√
7 are exact roots of the equation. If

two of the roots of a cubic equation are also roots of q − px + x2 = 0, the third cubic root is
−( c2c3 + p). Hence the third root here is −(−425 + 4) = 22

5 .

4. Application of Proposition 2.1 in the Construction of Identities

Many identities of Fn, Ln, and the golden ratio can be generated from Proposition 2.1 and
its corollaries. We will use the generalized formulas so that the identities will apply to any
quadratic root pair, a and b, with associated numbers sequences, Un and Vn, as described by
Lucas in [10].

The identities in the following two corollaries are derived from the particular polynomials
in which r = 1, cn = 1 and ci = 0 for 2 ≤ i ≤ n− 1.

Corollary 4.1. Suppose that Pn(x), defined as (2.1), has zeros ak and bk, and its coefficients
cn = 1 and ci = 0 for 2 ≤ i ≤ n− 1, then

(A) Uka
kn = Ukna

k − qkUk(n−1), (B) Ukb
kn = Uknb

k − qkUk(n−1), (4.1)

UkVkn = UknVk − 2qkUk(n−1), (4.2)

(A)Uk(n−1)a
kn = Ukna

k(n−1)− qk(n−1)Uk, (B)Uk(n−1)b
kn = Uknb

k(n−1)− qk(n−1)Uk, (4.3)

Uk(n−1)Vkn = UknVk(n−1) − 2qk(n−1)Uk, (4.4)

(A) Uma
n = Una

m − qmUn−m, (B) Umb
n = Unb

m − qmUn−m, (4.5)

UmVn = UnVm − 2qmUn−m, (4.6)

Um+n = Uma
n + Unb

m, and (4.7)

2Um+n = UmVn + UnVm . (4.8)
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Proof. Since Pn(ak) = Pn(bk) = 0, noting cn = 1 and ci = 0 for 2 ≤ i ≤ n − 1 in Pn(x), we
have Pn(ak) = c0 + c1a

k + akn. Thus, akn = −c1ak − c0. Substituting the values for c1 and c0
given by equations (2.11) and (3.8) into the previous equation results in

akn =
Ukn
Uk

ak −
qkUk(n−1)

Uk
=
Ukn
Uk

ak −
qkUk(n−1)

Uk
.

Multiplying by Uk, we get Uka
kn = Ukna

k−qkUk(n−1), which is equation (4.1)(A). In a similar
manner, one may obtain (4.1)(B).

Adding equations (4.1)(A) and (B) we get

Uk

(
akn + bkn

)
= Ukn

(
ak + bk

)
− 2qkUk(n−1),

which can be simplified to UkVkn = UknVk − 2qkUk(n−1), i.e., equation (4.2). Equating the
RHS of equation (2.6) to the RHS of (3.6)(C) (using i = n only), and simplifying the resulting
equation will also yield identity (4.2).

To prove identity (4.3)(A), Identity (4.1)(B) may be written as the polynomial equation:

Ukb
kn − Uknbk + qkUk(n−1) = 0.

From lemma 2.5, and noting b−k =
(
q−1a

)k
, we know that

qkUk(n−1)
(
q−1a

)kn − Ukn (q−1a)k(n−1) + Uk = 0,

which implies
q−k(n−1)Uk(n−1)a

kn = q−k(n−1)Ukna
k(n−1) − Uk.

Hence,
Uk(n−1)a

kn = Ukna
k(n−1) − qk(n−1)Uk,

A similar argument can be applied to identity (4.1)(A) of Corollary 4.1 for generating identity
(4.3)(B). Adding identities (4.3)(A) and (B) produces identity (4.4).

If the variable k in the identities (4.1)(A) and (B), and (4.2) is replaced with m, and kn
is replaced with n, these identities become equivalent to identities (4.5)(A) and (B), and
(4.6). Another way to prove these identities is to replace the Un, Um, and Un−m with their
respective Lucas Binet or Lucas formula representations in equations (4.5)(A) and (B). Then
using bm = qma−m in (4.5)(A), and am = qmb−m in (4.5)(B), and simplifying, it is easily
seen that these equations are valid. Adding equations (4.5)(A) and (4.5)(B) produces identity
(4.6).

Applying U−m = −q−mUm and a−1 = q−1b to identity (4.5)(A), then dividing by −q−m,
converts it into identity (4.7). Equation (4.8) is the result of adding identity(4.7) to itself after
interchanging the subscripts.

�

When k = 1, a = α, and b = β, the identities (4.1)(A) and (B) reduce to αn = αFn +
Fn−1 and βn = βFn + Fn−1, which are the identities proved by Thoro [17] mentioned in the
introduction. Also, identity (4.2) reduces to Ln = Fn + 2Fn−1, which is identity E [8, p. 27].

When k = 1, a = α, and b = β, identities (4.3)(A) and (B), and (4.4) become:

(A)Fn−1α
n = Fnα

n−1+(−1)n (B)Fn−1β
n = Fnβ

n−1+(−1)n (C)Fn−1Ln = FnLn−1+2(−1)n

(4.9)

12 VOLUME , NUMBER



POLYNOMIALS THAT HAVE GOLDEN RATIO ZEROS

Compare the single result of the identity mentioned in the introduction, αn = αFn + Fn−1,
with n = 6, α6 = 8α+ 5, to the multiple results using identity (4.5)(A), which provides all of
the following identities for α6, and more.

α6 = 8α+ 5 α6 = 8α2 − 3 α6 = 4α3 + 1

α6 =
1

3

(
8α4 − 1

)
α6 =

1

5

(
8α5 + 1

)
α6 =

1

13

(
8α7 + 1

)
α6 =

1

21

(
8α8−1

)
α6 =

1

34

(
8α9 + 2

)
α6 =

1

55

(
8α10−3

)
Remark The Fn, Ln version of identity (4.8) was proposed by Ferns in [6], and proved by
Wall in [20], and is also listed in [15] as identity (5).

Corollary 4.2. Let Pn(x) =
∑n

i=0 cix
i have zeros ak and bk, and its coefficients cn = 1 and

ci = 0 for 2 ≤ i ≤ n− 1, then

(A) Uka
kn = Ukn

(
ak − Vk

2

)
+
UkVkn

2
(B) Ukb

kn = Ukn

(
bk − Vk

2

)
+
UkVkn

2
(4.10)

Proof. Because Pn(ak) = c0 + c1a
k + akn, one may have akn = −c1ak − c0 = 0. Similarly,

bkn = −c1bk − c0. Substituting the values for c1 and c0 given by equations (2.11) and (2.6)
into these equations results in the following

akn =
Ukn
Uk

ak +
Vkn
2
− VkUkn

2Uk
.

Multiplying both sides by Uk produces

Uka
kn = Ukn

(
ak − Vk

2

)
+
UkVkn

2
.

Similarly, we have

Ukb
kn = Ukn

(
bk − Vk

2

)
+
UkVkn

2
.

�

When k = 1, a = α, and b = β, the identities (4.10)(A) and (B) reduce to: αn =
Fn
(
α− 1

2

)
+ Ln

2 , and βn = Fn
(
β − 1

2

)
+ Ln

2 , which may also be derived from the identi-
ties αn = αFn + Fn−1, and Ln = Fn + 2Fn−1. It is obvious that the case of k = 0 is trivial
and is omitted from Corollaries 3.2 and 3.3.

The following three corollaries are for the particular polynomials Pn(x), defined by (2.1),
with r = 1, and coefficients ci = t, t 6= 0, for 2 ≤ i ≤ n.

Corollary 4.3. Let Pn(x) =
∑n

i=0 cix
i have zeros a and b, and ci = t, t 6= 0, for 2 ≤ i ≤ n,

then
c1 = t

(
1− 1

p−q−1 [Un+2 − 1− (p− 1)Un+1]
)

and

c0 = t
(
Un − 1

p−q−1 [Un+2 − 1− (p− 1)Un+1]
)

. For a = α, and b = β this is c1 = −t(Fn+2−2)

and c0 = −t(Fn+1 − 1).
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U0 = −1/q U2 + p/q U1

U1 = −1/q U3 + p/q U2

U2 = −1/q U4 + p/q U3

· · ·
· · ·

Un−2 = −1/q Un + p/q Un−1
Un−1 = −1/q Un+1 + p/q Un
Un = −1/q Un+2 + p/q Un+1∑n

i=0 Ui = −1
q (
∑n

i=1 Ui + Un+1 + Un+2 − U1) + p
q (
∑n

i=1 Ui + Un+1)

Table 2

Proof. With ci = t for 2 ≤ i ≤ n, equations (3.11)(A) and (B) become

c1 = −t
n∑
i=2

Ui, and c0 = tq
n∑
i=2

Ui−1.

Rearranging the formula Un+2 = pUn+1−qUn, [10, eqns. (10), p. 10], we list the consecutive
Ui of

∑n
i=0 Ui in tabular form for summation. Observing Table 2, and noting that U0 = 0 and

U1 = 1, it can been seen that
n∑
i=1

Ui =
1

p− q − 1
(Un+2 − 1− (p− 1)Un+1) (4.11)

When p = 1, and q = −1, equation (4.11) becomes the identity
∑n

i=1 Fi = Fn+2 − 1, [10, p.
26], and [8, p. 52] I1.

c1 = −t (
∑n

i=1 Ui − U1), with identity (4.11), this is t
(

1− 1
p−q−1 [Un+2 − 1− (p− 1)Un+1]

)
.

When p = 1, and q = −1, this is c1 = −t(Fn+2 − 2). Next, Let m = i − 1, then when i = 2,
m = 1, and i = n, we have m = n− 1. Then c0 = −t

∑n
i=2 Ui−1 is transformed into

c0 = t (Un −
∑n

m=1 Um), and with identity (4.11), this becomes

t
(
Un − 1

p−q−1 [Un+2 − 1− (p− 1)Un+1]
)

. When p = 1, and q = −1, this is

c0 = t (Fn − Fn+2 + 1). Replacing Fn+2 with Fn + Fn+1 results in
c0 = t [Fn − (Fn + Fn+1) + 1] = −t(Fn+1 − 1).

�

The following identities are generated from Corollary 4.3.

Corollary 4.4. Suppose that Pn(x), defined as (2.1), has zeros α and β, and coefficients
ci = 1 for 2 ≤ i ≤ n, then

(A)

n∑
i=0

αi = α(Fn+2 − 1) + Fn+1 (B)

n∑
i=0

αi = αn+2 − α (4.12)

(A)
n∑
i=0

βi = β(Fn+2 − 1) + Fn+1 (B)
n∑
i=0

βi = βn+2 − β (4.13)
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Proof. Substituting −(Fn+2 − 2) for c1 and −(Fn+1 − 1) for c0 into Pn(α) = c0 + c1α +∑n
i=2(1)αi = 0 produces

Pn(α) = −(Fn+1 − 1)− (Fn+2 − 2)α+
n∑
i=2

αi = 0, (4.14)

which implies

1 + α+

n∑
i=2

αi = 1 + α+ α(Fn+2 − 2) + Fn+1 − 1

or equivalently,
n∑
i=0

αi = α(Fn+2 − 1) + Fn+1,

i.e., (4.12)(A). Replacing αFn+2 + Fn+1 with αn+2 (Thoro identity):
n∑
i=0

αi = αn+2 − α,

which is (4.12)(B). Doing the same process to

Pn(β) = c0 + c1β +

n∑
i=2

(1)βi = 0

produces identity (4.13)(A). Replacing βFn+2 + Fn+1 with βn+2 (see Thoro’s identity), we
have

n∑
i=1

βi = βn+2 − β − 1,

which is (4.13)(B).

�

Adding identities (4.12)(B) and (4.13)(B) gives us
∑n

i=1 Li = Ln+2 − 3 which is identity
(I2) in [8, p. 54]. Adding identities (4.12)(A) and (4.13)(A) ends up with that same result
when the identity Ln+2 = Fn+2 + 2Fn+1 is applied.

Another way to prove identities (4.12)(A) and (4.13)(A) is to use the identities

αn = αFn + Fn−1 and βn = βFn + Fn−1,

with
∑n

i=1 Fi = Fn+2 − 1. More precisely,

n∑
i=1

αi = α
n∑
i=1

Fi +
n∑
i=1

Fi−1 = α(Fn+2 − 1) +
n−1∑
m=0

Fm = α(Fn+2 − 1) + Fn+1 − 1,

which implies

1 +

n∑
i=1

αi = 1 + α(Fn+2 − 1) + Fn+1 − 1,

or equivalently,
n∑
i=0

αi = α(Fn+2 − 1) + Fn+1.
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A different proof of identities (4.12)(B) and (4.13)(B) is to use the formula for the sum of
a geometric progression having α (or β) as both the first term and the common ratio. For
example, Let

sn :=
n∑
i=1

αi = α
αn − 1

α− 1
.

Since α−1 = 1
α , sn = α2 (αn − 1) = αn+2−α2. Replacing α2 with α+ 1, sn = αn+2− (α+ 1),

which gives

1 +
n∑
i=1

αi = 1 + αn+2 − α− 1,

namely,
∑n

i=0 α
i = αn+2 − α.

Corollary 4.5. If Pn(x) =
∑n

i=0 cix
i has 2α and 2β as zeros, and coefficients ci = 1 for

2 ≤ i ≤ n, then coefficients

c1 = −2nLn+1 − 6

5
and c0 = −2n+1Ln − 4

5
.

Proof. Using Proposition 2.1, r = 2, and k = 1, then

c1 = −
n∑
i=2

2i−1Fi and c0 = −
n∑
i=2

2iFi−1.

Hence, to prove the formula for c1, we need to verify that
n∑
i=2

2i−1Fi =
2nLn+1 − 6

5
.

First, it is clearly true for n = 2, because both sides are equal to 2. Assume that it is true for
n. To check if the formula for the sum is true for n+ 1, we replace n with n+ 1 in the sum:

n+1∑
i=2

2i−1Fi =

n∑
i=2

2i−1Fi + 2nFn+1 =
2nLn+1 − 6

5
+ 2nFn+1.

Using the identity Ln−1 + Ln+1 = 5Fn, from [18, identity (5), p. 176], we replace Fn+1 by
Ln+Ln+2

5 and obtain

n+1∑
i=2

2i−1Fi =
2nLn+1 − 6

5
+ 2n

(
Ln + Ln+2

5

)
=

2n+1Ln+2 − 6

5
,

which matches the original formula when n = n + 1. Therefore, if it is true for n, then it is
true for n+ 1. Since it is true for n = 2, by mathematical induction it is true for all integers
n ≥ 2, which completes the proof of the formula for c1.

To prove the formula for c0, we need to show
n∑
i=2

2iFi−1 =
2n+1Ln − 4

5
.

It is easily seen that the above equation holds for n = 2 because both sides becomes 4. We
note that for n > 2,

n∑
i=2

2iFi−1 = 4

(
1 +

n−1∑
i=2

2i−1Fi

)
,
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in which we substitute the identity

n−1∑
i=2

2i−1Fi =
2n−1Ln − 6

5

and obtain
n∑
i=2

2iFi−1 = 4

(
1 +

2n−1Ln − 6

5

)
=

2n+1Ln − 4

5
.

�

Remark The c0 values of Pn(x) = 0 |Pn(2α) = Pn(2β) = 0 when {c2, . . . , cn} = 1 are −4an,
where an are the integers of Sloane’s sequence A014335 [11] starting with a1 = 0 and a2 = 1.
The identities proven in Corollary 4.5 conform to the two formulas attributed to Benoit Cloitre
on the web page for this sequence [11]. It is also −2bn, where bn ∈ Sloane’s sequence A014334,
[12].

The next two corollaries are for the particular polynomials in which ci = t(−1)n−i, t 6= 0,
for 2 ≤ i ≤ n.

Corollary 4.6. Let Pn(x) =
∑n

i=0 cix
i have zeros α and β, and coefficients ci = t(−1)n−i for

2 ≤ i ≤ n, then c1 = −tFn−1 and c0 = −t(Fn−2 + (−1)n).

Proof. [8, p. 56] presents the identities

F1 + F3 + F5 + . . .+ F2m−1 = F2m , for m ≥ 1 (I5)

F2 + F4 + F6 + . . .+ F2m = F2m+1 − 1 , for m ≥ 1 (I6)

For the purpose of this proof, These identities are combined into one, and the F1 term is
omitted. If m in (I5) is replaced with n+1

2 , F1 = 1 is subtracted from (I5), m in (I6) is
replaced with n

2 , and we introduce the parity function

ε =
1− (−1)n

2
=

{
1 if n is odd
0 if n is even

we get the following identity from (I5) and (I6):

2j=n−2−ε∑
j=0

Fn−2j = Fn + Fn−2 + Fn−4 + . . .+ F2+ε = Fn+1 − 1 , n ≥ 2 (4.15)

This identity is for 2 ≤ n− 2j ≤ n (because the F1 term is omitted). For 1 ≤ n− 2j ≤ n (in
which the F1 term is included when n is odd), the identity is:

2j=n−2+ε∑
j=0

Fn−2j = Fn + Fn−2 + Fn−4 + . . .+ F2−ε = Fn+1 − 1 + ε , n ≥ 1 (4.16)

Letting ci = t(−1)n−i for 2 ≤ i ≤ n, equation (3.11)(A) becomes

c1 = t (−Fn + Fn−1 − Fn−2 + Fn−3 − . . .+ (−1)n F3 − (−1)n F2) .

The above equation may be separated into

c1 = −t (Fn + Fn−2 + Fn−4 + . . .+ F2+ε) + t (Fn−1 + Fn−3 + Fn−5 + . . .+ F3−ε) .
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Using identity (4.15), we convert c1 to

c1 = −t (Fn+1 − 1) + t (Fn−1+1 − 1) = −tFn+1 + tFn = −tFn−1.

Inserting ci = t(−1)n−i for 2 ≤ i ≤ n into equation (3.11)(B), we have

c0 = t (−Fn−1 + Fn−2 − Fn−3 + Fn−4 − . . .+ (−1)nF2 − (−1)nF1) .

Applying identity(4.15), the above equation for c0 is converted to

c0 = −t (Fn−1+1 − 1)+ t (Fn−2+1 − 1)− t(−1)n = −tFn+ tFn−1− t(−1)n = −t(Fn−2 +(−1)n).

�

Corollary 4.6 is used to derive the following identities.

Corollary 4.7. Suppose that Pn(x), defined as (2.1), has zeros α and β, and ci = (−1)n−i

for 2 ≤ i ≤ n, then

(A)

n∑
i=1

(−1)n−iαi = α (Fn−1 − (−1)n) + Fn−2 + (−1)n

(B)
n∑
i=1

(−1)n−iαi = αn−1 + (−1)n (1− α) (4.17)

(A)
n∑
i=1

(−1)n−iβi = β (Fn−1 − (−1)n) + Fn−2 + (−1)n

(B)
n∑
i=1

(−1)n−iβi = βn−1 + (−1)n (1− β) (4.18)

n∑
i=1

(−1)n−iLi = Ln−1 + (−1)n (4.19)

n∑
i=1

(−1)n−iFi = Fn−1 − (−1)n. (4.20)

Proof. Substituting −Fn−1 for c1 and −(Fn−2 + (−1)n) for c0 into

Pn(α) = c0 + c1α+
n∑
i=2

(−1)n−iαi = 0

produces

Pn(α) = −(Fn−2 + (−1)n)− αFn−1 +

n∑
i=2

(−1)n−iαi = 0,

which implies
n∑
i=2

(−1)n−iαi = αFn−1 + Fn−2 + (−1)n.
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Hence,
n∑
i=1

(−1)n−iαi = −(−1)nα+
n∑
i=2

(−1)n−iαi = α (Fn−1 − (−1)n) + Fn−2 + (−1)n,

which is (4.17)(A). Replacing αFn−1 + Fn−2 with αn−1, from the above formula we have

n∑
i=1

(−1)n−iαi = αn−1 + (−1)n (1− α) ,

which is (4.17)(B).

Substituting −Fn−1 for c1 and −(Fn−2 + (−1)n) for c0 into

Pn(β) = c0 + c1β +

n∑
i=2

(−1)n−iβi = 0

produces

Pn(β) = −(Fn−2 + (−1)n)− βFn−1 +
n∑
i=2

(−1)n−iβi = 0

which implies
n∑
i=2

(−1)n−iβi = βFn−1 + (Fn−2 + (−1)n).

Hence,
n∑
i=1

(−1)n−iβi = (−1)n−1β +

n∑
i=2

(−1)n−iβi = β (Fn−1 − (−1)n) + Fn−2 + (−1)n,

which is (4.18)(A). Replacing βFn−1 + Fn−2 with βn−1 into the above formula yields

n∑
i=1

(−1)n−iβi = βn−1 + (−1)n (1− β) ,

which is (4.18)(B).

Adding identities (4.17)(A) and (4.18)(A) gives us

n∑
i=1

(−1)n−i
(
αi + βi

)
= (α+ β) (Fn−1 − (−1)n) + 2Fn−2 + 2(−1)n,

which implies
n∑
i=1

(−1)n−iLi = (1) (Fn−1 − (−1)n) + 2Fn−2 + 2(−1)n.

Replacing Fn−1 + 2Fn−2 with Ln−1 yields

n∑
i=1

(−1)n−iLi = Ln−1 + (−1)n,

which is (4.19).
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Subtracting identities (4.17)(A) and (4.18)(A) gives us
n∑
i=1

(−1)n−i
(
αi − βi

)
= (α− β) (Fn−1 − (−1)n) .

Dividing by α− β on the both sides of the above equation, we obtain
n∑
i=1

(−1)n−i
(
αi − βi

α− β

)
= Fn−1 − (−1)n ,

or equivalently,
n∑
i=1

(−1)n−iFi = Fn−1 − (−1)n ,

which is (4.20).

�

Corollary 4.8. If Pn(α) = Pn(β) = 0, and ci = t(−1)i, t 6= 0, for 2 ≤ i ≤ n, then
c1 = −t(−1)nFn−1 and c0 = −t [(−1)nFn−2 + 1].

Proof. By equations (3.11) (A) and (B), c1 = −t
∑n

i=2(−1)iFi, and c0 = −t
∑n

i=2(−1)iFi−1.
c1 = −t

[
(−1)nFn + (−1)n−1Fn−1 + . . .− F3 + F2

]
= −t(−1)n [Fn − Fn−1 + . . .− F3 + F2].

By identity (4.15), c1 = −t(−1)n [(Fn+1 − 1)− (Fn − 1)] = −t(−1)nFn−1.
c0 = −t

[
(−1)nFn−1 + (−1)n−1Fn−2 + . . .+ F3 − F2 + F1

]
=

−t(−1)n [Fn−1 − Fn−2 + . . .− F2 + F1]. By identity (4.15),
c0 = −t(−1)n [(Fn − 1)− (Fn−1 − 1) + F1] = −t [(−1)nFn−2 + 1]. �

Corollary 4.8 is used to derive the following identities.

Corollary 4.9.

(A)
n∑
i=1

(−α)i = (−1)n(αFn−1 + Fn−2) + β (B)
n∑
i=1

(−α)i = (−α)n−1 + β (4.21)

(A)

n∑
i=1

(−β)i = (−1)n(βFn−1 + Fn−2) + α (B)

n∑
i=1

(−β)i = (−β)n−1 + α (4.22)

n∑
i=1

(−1)iLi = (−1)nLn−1 + 1 (4.23)

n∑
i=1

(−1)iFi = (−1)nFn−1 − 1 (4.24)

Proof. Let t = 1, and substitute the values from corollary 4.8 for c1 and c0 into
Pn(α) = c0 + c1α +

∑n
i=2(−1)iαi = 0 to get

∑n
i=2(−1)iαi = (−1)nFn−1α + (−1)nFn−2 + 1.

Adding (−1)1α1 = −α to both sides, and replacing 1− α with β:∑n
i=1(−α)i = (−1)n(αFn−1 + Fn−2) + β, which is (4.21)(A). Replacing αFn−1 + Fn−2 with

αn−1:
∑n

i=1(−α)i = (−1)nαn−1 + β, which is (4.21)(B).
This same process may be done to Pn(β) = c0 + c1β+

∑n
i=2(−1)iβi = 0 to arrive at identities

(4.22) (A) and (B).
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Adding equations (4.21) (B) and (4.22) (B) to get (4.23):∑n
i=1(−1)i(αi + βi) = (−1)n

(
αn−1 + βn−1

)
+α+ β →

∑n
i=1(−1)iLi = (−1)nLn−1 + 1, which

is (4.23). Subtracting equation (4.22) from equation (4.21) to get (4.24):∑n
i=1(−1)i(αi − βi) = (−1)n

(
αn−1 − βn−1

)
− (α− β)→ Divide by (α− β) →∑n

i=1(−1)i α
i−βi

α−β = (−1)n
(
αn−1+βn−1

α−β

)
− α−β

α−β →
∑n

i=1(−1)iFi = (−1)nFn−1 − 1, which is

(4.24). �

Corollary 4.10. Let Pn(x) =
∑n

i=0 cix
i have r as a duplicate zero, and its coefficients ci = t1

for 2 ≤ i ≤ n, then

c1 = −t1
n∑
i=2

iri−1 =

 −t1
(

2r−r2−(n+1)rn+nrn+1

(r−1)2

)
if r 6= 1

−t1
(
n(n+1)

2
− 1
)

if r = 1.
(4.25)

c0 = t1

n∑
i=2

(i− 1)ri =

 t1

(
r2−nrn+1+(n−1)rn+2

(r−1)2

)
if r 6= 1

t1

(
n(n−1)

2

)
if r = 1.

. (4.26)

Proof. To proof the case of r = 1, using the equations of the k = 0 case of (2.2) and (2.3),
with r = 1 and c2, . . . , cn = t1, we have

c1 = −
n∑
i=2

t1i and c0 =

n∑
i=2

t1(i− 1)

From these, and Gauss’s formula,
∑n

i=1 i = n(n+1)
2 , we get c1 = −t1

(
n(n+1)

2 − 1
)

. Letting

m = i− 1, we have c0 = t1
∑n−1

m=1m = t1

(
n(n−1)

2

)
.

To prove equations (4.25) and (4.26) for the case r 6= 1, we divide out the ±t1, and label
the sum on the left as S, then multiply both sides of the equation by (1 − r)2 = 1 − 2r + r2

to get S − 2rS + r2S .

The addition and subtraction of S − 2rS + r2S for the S of equation (4.25) is illustrated in
Table 3.

2r +3r2 +4r3 + 5r4 . . . +(n− 1)rn−2 +nrn−1 :S
−4r2 −6r3 − 8r4 . . . −2(n− 2)rn−2 −2(n− 1)rn−1 −2nrn :−2rS

2r −r2 −2r3 − 3r4 . . . −(n− 3)rn−2 −(n− 2)rn−1 −2nrn = S − 2rS
r2S: +2r3 + 3r4 . . . +(n− 3)rn−2 +(n− 2)rn−1 +(n− 1)rn +nrn+1

2r −r2 −(n + 1)rn +nrn+1

Table 3

From the result of the operation shown in Table 3,

S − 2rS + r2S = S(r − 1)2 = 2r − r2 − (n+ 1)rn + nrn+1
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multiplying by −t1
(r−1)2 ,

−t1S = −t1
(

2r − r2 − (n+ 1)rn + nrn+1

(r − 1)2

)
= −t1

n∑
i=2

iri−1 = c1

The addition and subtraction of S − 2rS + r2S for the S of equation (4.26) is illustrated in
Table 4.

r2 +2r3 +3r4 + 4r5 . . . +(n− 2)rn−1 +(n− 1)rn :S
−2r3 −4r4 − 6r5 . . . −2(n− 3)rn−1 −2(n− 2)rn −2(n− 1)rn+1 :−2rS

r2 −r4 − 2r5 . . . −(n− 4)rn−1 −(n− 3)rn −2(n− 1)rn+1 = S − 2rS
r2S: +r4 + 2r5 . . . +(n− 4)rn−1 +(n− 3)rn +(n− 2)rn+1 +(n− 1)rn+2

r2 −nrn+1 +(n− 1)rn+2

Table 4

From the result of the operation shown in Table 4,

S − 2rS + r2S = S(r − 1)2 = r2 − nrn+1 + (n− 1)rn+2

multiplying by t1
(r−1)2 ,

t1S = t1

(
r2 − nrn+1 + (n− 1)rn+2

(r − 1)2

)
= t1

n∑
i=2

(i− 1)ri = c0

�

The above proof is for any value of r. For the particular case of r = 2, equations (4.25) and
(4.26) become

c1 = −t1(n− 1)2n and c0 = t1(n− 2)2n+1 + 4 (4.27)

Although the proof above is sufficient, we may prove these particular equations by mathemat-
ical induction. By the k = 0 case of equations (2.2) and (2.3), with r = 2 and c2, . . . , cn = t1,
we have

c1 = −t1
n∑
i=2

i2i−1 and c0 = t1

n∑
i=2

(i− 1)2i

Therefore, we need to show that

(A)
n∑
i=2

i2i−1 = (n− 1)2n and (B)
n∑
i=2

(i− 1)2i = (n− 2)2n+1 + 4 (4.28)

We verify that identity (4.28)(A) is true for n = 2. Assuming it is true for n, then,

n+1∑
i=2

i2i−1 =

n∑
i=2

i2i−1 + (n+ 1)2n+1−1 = (n− 1)2n + (n+ 1)2n = 2n2n = n2n+1 .
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This is the same as the RHS of identity (4.28)(A) with n + 1 replacing n. Hence, if the
identity is true for n, then it is true for n+ 1. It is true for n = 2, therefore it is also true for
n = 2 + 1 = 3, n = 3 + 1 = 4, and so on.

To prove identity (4.28)(A),

n+1∑
i=2

(i− 1)2i =

n∑
i=2

(i− 1)2i + (n+ 1− 1)2n+1 =
[
(n− 2)2n+1 + 4

]
+ n2n+1 .

= 2n2n+1 − 2n+2 + 4 = (n− 1)2n+2 + 4 .

This is the same as the RHS of identity (4.28)(B) with n+ 1 replacing n. We verify that it is
true for n = 2, then by induction it is true for integers n ≥ 2.

Remark The value of c0 in the Pn(x) presented above, having 2 as a duplicate zero, is 4an−1,
where an ∈ Sloane’s number sequence A0003337, [13], which means an = (n − 1)2n + 1 =∑n

i=1 i2
i−1. The value of c1 in this same Pn(x) is −4bn−1, , where bn ∈ Sloane’s number

sequence A001787, [14], which means bn = n2n−1 =
∑n

i=1(i+ 1)2i.

4.1. A New Type of Geometric Progression. Identity (4.25) presented in corollary 4.10
may be rewritten as

Sk = t1

k∑
j=1

jrj−1 =

 t1

(
1−(k+1)rk+krk+1

(r−1)2

)
if r 6= 1

t1

(
k(k+1)

2

)
if r = 1.

(4.29)

Equation (4.29) represents the sum of the first k terms of a new type of geometric progression,
with the first term = t1, the jth term = t1jr

j−1, and a ratio of succeeding terms, j and j + 1,
of r j+1

j . When r < 1 in equation (4.29), S∞ = 1
(1−r)2 . Compare this to the common geometric

progression with the first term = t1, the jth term = t1r
j−1, a ratio of succeeding terms of r,

and the sum of the first k terms Sk = t1
∑k

j=1 r
j−1 = t1

rn−1
r−1 if r 6= 1, Sk = kt1 if r = 1. When

r < 1, S∞ = 1
(1−r) for the common geometric progression.

For equation (4.26) When r < 1, S∞ = r2

(1−r)2 .
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